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Abstract. We present a study of the ionization of the hydrogen atom by weak and strong static electric fields
from the ground state and from some excited states. The under- and above-ionization barrier dynamical
regimes are accurately computed for short and long times. The results are interpreted through the spectral
density which emphasizes, for transitory regimes, the role of the resonances arising from the ground and
from the lowest excited states. The observability of the dynamics is discussed.

PACS. 32.60.+i Zeeman and Stark effects – 32.70.Cs Oscillator strengths, lifetimes, transition moments
– 32.70.Jz Line shapes, widths, and shifts

1 Introduction

The decay of the ground state of the hydrogen atom ex-
posed to a static electric field has been the subject of many
studies since the beginning of quantum mechanics. Most
of the investigations have been done at low fields. The
ground state is an isolated resonance and the atom ionizes
by tunneling effect. In this domain, the quasi-classical the-
ory provides a satisfactory simple expression of the ioniza-
tion rate [1]. At higher fields ionization proceeds directly
above the Coulombic barrier created by the external field.
Up to now only a limited work has been done at high field,
generally restricted to short-time dynamics [2,3]. Geltman
wrote in [3]: “... A complete treatment by Stark broaden-
ing theory that would be applicable to all t has not yet
been carried out...”. Since at short times the dynamics of
the ionization from the ground state implies the lowest
excited states, we have also investigated the dynamics of
the ionization starting from the excited states 2s and 2p.
Although the whole ionization process is irreversible tran-
sitory oscillating regimes may appear. It is noteworthy
that the hydrogen atom which possesses only one electron
may generate a large range of reversible and irreversible
processes. Therefore it is justified to perform an overall
study of the various decay regimes in weak, intermediate
and strong fields. We will focus on the various time scales
relevant to the dynamics. A special emphasis will be given
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to non-expotential decays which do not seem to have been
studied previously, especially within the tunneling regime.

It is important, for computing and understanding the
dynamics, to master the mean lifetimes of the ground
state and of the lowest excited states implied in the ion-
ization process [3]. The excited states are more polariz-
able than the ground state and their lifetimes are much
shorter than the lifetime of the ground state. It results
that computing accurately the dynamics of the ionization
at short times and at long times requires an accurate de-
termination of the various characteristic time scales. In
close-coupling approaches much attention must be paid
for avoiding spurious reflections arising from the use of
finite grids or of a finite number of basis functions [3,4].
Consequently some smoothing, or filtering or averaging
procedure is needed for determining the Green’s functions
(spectral densities) which provide the relevant widths.
Many techniques are available for performing analytical
continuation, the most current being to add an optical
potential [5] (or a complex absorbing potential [6]) to the
Hamiltonian or to complex-rotate the dissociative elec-
tronic variable in the Hamiltonian [7]. It has been shown
that complex scaling and the use of a simple basis of Slater
orbitals lead to accurate widths of the resonances arising
from the 1s, 2s and 2p states [8,9]. Complex scaling pro-
vides also an accurate description of the depletion of the
ground state for the intermediate value of the electric field
E = 0.08 a.u. [2,4]. Therefore we have chosen to apply
this method for computing, describing and interpreting
the results. The Green’s functions yield the relevant en-
ergies, widths and oscillator strengths. The survival and
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transition probabilities are immediately obtained by the
inverse Laplace transformation. The theory will be briefly
recalled in Section 2. The dynamics of the ionization from
the ground state will be investigated in Section 3. Various
ionization processes arising from the state 2s and 2p will
be presented in Section 4.

2 Theory

A constant electric field of amplitude E is applied to the
hydrogen atom. At the initial time t = 0 it is assumed
that the atom is in the ground state. The time-dependent
wave function proceeds as

|ψ(t)〉 = e−i Ht/�|1s〉; (t > 0). (1)

As soon as the atom is exposed to the field, the ground
state becomes a resonance and the atom begins to ionize.
Since we aim to study the dynamics of the ionization pro-
cess we shall determine the probability of remaining in the
initial state (survival probability) at the time t:

P (t) = |〈1s|ψ(t)〉|2. (2)

A deeper insight into the dynamics is obtained by an en-
ergy analysis of the initial state given by the lineshape
(spectral density) [10]

I(E) = − 1
π

ImG(E). (3)

G(E) is the Green’s function associated with the ground
state. By extending the variable energy E in the complex
plane (variable z), the Green’s function is expressed as

G(z) = 〈1s| 1
z −H

|1s〉. (4)

The survival probability amplitude is the inverse Laplace-
Fourier transform of the Green’s function:

〈1s|ψ(t)〉 =
1

2π i

∫
C

G(z) e−i zt/�dz (t > 0). (5)

In (5) the integration path C runs on the real energy axis
from +∞ to −∞ and is closed in the lower part (Im z < 0)
of the complex plane. Since there is no elementary way to
solve the problem analytically we will determine numerical
solutions. We consider the usual Hermitian Hamiltonian
in Cartesian coordinates:

H = −∆
2

− 1
r
− Ez. (6)

By complex-rotating the coordinates [7], the Hamilto-
nian (6) becomes

Hθ = −∆
2

e−2iθ − 1
r
e−iθ − Ezeiθ. (7)

θ is the angle of rotation. From (6) and throughout this
paper we will use atomic units (a.u.). The diagonaliza-
tion of the Hamiltonian (7) in a finite basis set of N

square-integrable functions provides a finite number of
eigensolutions Ek, |ψk) (k = 1, 2, ...N). Then the Green’s
function (4) may be written as

G(z) =
∑

k

fk

z − Ek
· (8)

The fk’s are generalized oscillator strengths [10]:

fk = 〈1s|S−1|ψk)(ψk|S|1s〉; S = eiθr d
dr ;

∑
k

fk = 1.
(9)

The oscillator strengths play an important role for
discussing the lineshapes (3) and the various dynamical
regimes. Using (8) the survival amplitude (5) may be
expressed as

〈1s|ψ(t)〉 =
∑

k

fke−i Ekt/�. (10)

Ionization from excited states proceeds along the same
lines as for the ground state. If we assume that the atom
is in the state |i〉 at the initial time, expressions (1) to (9)
remain valid by replacing |1s〉 by |i〉. The dynamical
information for computing the transition probabilities
between two states requires the determination of the
Green’s function:

Gij(z) = 〈i| 1
z −H

|j〉 =
∑

k

fij,k

z − Ek
, (11)

where

fij,k = 〈i|S−1|ψk)(ψk|S|j〉;
∑

k

fij,k = δij . (12)

It is assumed in (11) and (12) that the states |i〉 are or-
thonormal.

The numerical calculations were done by using a finite
basis set of 320 Slater orbitals of the form

ϕl,k ∝ rk−l−1e−ζ r Yl,0 (θ, φ); k = l + 1, 2...l+ 40. (13)

The orbital quantum number runs from l = 0 to l = 7
and ζ = 1. The orbitals were symmetrically orthogonal-
ized and we have kept N = 175 numerically linearly inde-
pendent functions. Finally, the summation over k, in (8)
and (9), is limited to M < N values of k correspond-
ing to the eigenenergies having negative imaginary parts
(� outgoing boundary conditions). The values of M were
found to be near N = 175, for example, M = 169 for
E = 0.005 a.u. and M = 130 for E = 1 a.u. For any value
of the electric field the closure relation over the oscillator
strengths is accurately satisfied. The greatest discrepancy
1 − ∑

k fk = 0.000019 + i 0.000029 occurs for the highest
value of the electric field E = 1 a.u. We have carefully
checked that the observable quantities (lineshapes and
survival probabilities) did not depend in a large extend
on the parameters of the basis: the exponent ζ, the num-
ber of angular symmetries l and the number of orbitals
for each value of l. In addition, we have verified that the
results did not depend on the angle of rotation θ within
the interval [0.2–0.4]. We have also compared our results
for E = 0.08 a.u. with the dynamics found by Scrinzi [2]
(see Sect. 3.2).
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3 Ionization from the ground state

The frontier between weak and strong coupling appears for
E = 0.0625 a.u. when the energy of the ground state be-
comes equal to the energy at the top of the potential bar-
rier generated by the electric field. For fields E ≤ 0.02 a.u.
the coupling with the continuum is weak and the isolated
Weisskopf-Wigner resonance has an almost exponential
decay. This weak coupling regime was fully investigated
for many years by many methods. However, it still remains
to investigate the transitory regimes at short times. For
strong electric fields, E � 0.1 a.u., a complete treatment
of the problem has not yet been done. Let us now study
the evolution of the dynamics of the ionization for the
weak, intermediate and strong couplings.

3.1 Weak coupling (E ≤ 0.02 a.u.)

The ground state 1s is an almost pure Weisskopf-Wigner
resonance weakly coupled to the continuum. The width of
the resonance and the survival probability are approxima-
tively given by the quasi-classical theory [1]:

Γ (a.u.) =
4
E exp

(
− 2

3 E
)

; P (t) = exp
(
−Γ t

�

)
.

(14)
However, there are corrections to the exponential decay es-
pecially at short times. We have represented in Figure 1,
for three values of the electric field, the survival probabil-
ities for short times (t < 400 a.u.) and the corresponding
lineshapes (spectral densities). We have not represented
the long-time dominant exponential decay which corre-
sponds to times much greater (� 1055 a.u.) than 400 a.u.
The choice of a unique time scale in Figure 1 (t ≤ 400 a.u.)
allows us to compare for very short times the non-ex-
potential regimes which last 106, 2 × 103, 4 × 102 a.u. for
the fields E = 0.005, 0.01 and 0.02 a.u., respectively. Since
we focused on the first oscillations of the survival probabil-
ity we have not represented the full transitory regimes. In
the three cases the survival probability oscillates. Note,
that the amplitudes of these oscillations are small. The
origin of these oscillations is easily found by examining
the lineshapes on the right of the figure. Clearly, the reso-
nances arising from the states 2s and 2p participate to the
dynamics. It can be checked that the period of the oscil-
lations is approximatively T = 2π �/∆ � 17 a.u., ∆ being
the energy difference between the ground state 1s and the
two lowest excited states 2s and 2p.

A deeper understanding of the short-time dynamics
may be found by considering the dominant terms of the
Green’s function

G(z) =
f1s

z − E1s
+

f1
z − E1

+
f2

z − E2
+ ... (15)

E1s = E1s − iΓ1s/2 is the complex energy of the resonance
1s and f1s � 1 is the corresponding oscillator strength.
The energies Ek = Ek − iΓk/2 (k = 1, 2) are the energies
of the resonances arising from the states 2s and 2p. These
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Fig. 1. Weak coupling. The survival probabilities P (t) (2) and
the lineshapes I(E) (3) are represented on the left and on the
right, respectively. (a) E = 0.005, (b) E = 0.01, (c) E = 0.02
(atomic units).

energies are in agreement with those published in [9]. The
oscillator strengths f1 and f2, which are responsible for
the short-time dynamics, are much smaller than 1, for
example, |f1| = 4 × 10−5 and |f2| = 5 × 10−5 in case
(a). The order of magnitude of the duration of the non-
expotential regime is approximatively given by the inverse
of the width of the 2s–2p resonances. Since their lifetime
is τ � 106 a.u. in case (a), the dynamics is reversible
within the range of time [0–400 a.u.]. The survival proba-
bility displays regular quantum beats, the period of which
is 2π�/(E2 − E1) � 200 a.u. In cases (b) and (c), the
lifetimes of the resonances are τ = 1000 a.u. and 100 a.u.,
respectively. It results that globally the short-time dynam-
ics displays an irreversible evolution. We will now show
that the oscillations observed at low fields progressively
disappear by increasing the amplitude of the electric field.

3.2 Intermediate coupling (0.02 a.u. < E < 0.1 a.u.)

We have plotted in Figure 2 the survival probabilities (on
the left) and the lineshapes (on the right) for three val-
ues of the electric field, under, near and above the critical
value E = 0.0625 a.u., which corresponds to the disap-
pearance of the tunneling regime. The oscillations disap-
pear progressively when the electric field increases from
E = 0.04 a.u. in (a) to E = 0.08 a.u. in (c). The ex-
tinction of the transitory oscillations is directly related to
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Fig. 2. Intermediate coupling. The survival probabilities
P (t) (2) and the lineshapes I(E) (3) are represented on the
left and on the right, respectively. (a) E = 0.04, (b) E = 0.06,
(c) E = 0.08 (atomic units).

the disappearance of the 2s–2p resonances as autonomous
objects. The double bump still present in the lineshape
(a) has disappeared in (c) which displays a broad asym-
metrical profile. Note, that for E = 0.08 a.u., case (c), the
agreement between our survival probability and the full
line curve in Figure 1 of [2] is perfect.

3.3 Strong coupling (E � 0.1 a.u.)

For fields much higher than the critical value E =
0.0625 a.u. the transitory regimes disappear. Broad line-
shapes lead to decays which look more Gaussian than
Lorentzian (Fig. 3). For these extremely high electric fields
the internal Coulombic forces are of the same order of
magnitude as the external field forces. The hydrogen atom
is not any more a long-lived resonance but an extremely-
short-lived state whose lifetime is about 1 a.u. � 10−17 s.

Figure 4 represents the survival probability (logarith-
mic scale) as a function of t (a) and of t2 (b). The rep-
resentations of the survival probability (a) and (b) are
roughly linear, which confirms that the process is neither
purely Lorentzian nor purely Gaussian. However, for times
t < 1 a.u., the logarithm of P (t) is dominated by a term
proportional to t2. In both cases the survival probabili-
ties are depicted for two values of the rotation angle θ:
0.02 (full lines) and 0.04 (dotted lines). The curves are
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Fig. 3. Strong coupling. The survival probabilities P (t) (2)
and the lineshapes I(E) (3) are represented on the left and on
the right, respectively. (a) E = 0.5, (b) E = 1.0 (atomic units).
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Fig. 4. Survival probability E = 1. (a) Survival probability
P (t) (2) as a function of t. (b) Survival probability P (t) (2)
as a function of t2 (atomic units). Full lines: θ = 0.2; dotted
lines: θ = 0.4; θ is the rotation angle of the complex scaling
operator S in (9).

almost identical which proves the independence of the
dynamical observables on the parameters of the numer-
ical calculation. On the other hand, the complex energies
and the oscillator strengths vary with θ in a large extend.
This result is not surprising: for very high field the usual
concept of resonance becomes irrelevant and has to be
replaced by the concept of short-lived state. Finally, we
note that the mean duration of the ionization varies from
1055 a.u. (� 1048 s) for E = 0.005 a.u. in Figure 1 to 1 a.u.
(� 10−17 s) for E = 1 a.u. in Figure 3, which represents
a change of 55 order of magnitude for the full irreversible
process!
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3.4 Discussion

The results presented above display large non-expotential
decays. Non-expotential decays and irreversibility have
been largely investigated for many years and there is a
huge literature on the subject. The theory predicting cor-
rections to exponential decay may be found in the comple-
ment CIII of [11]. For very short times the probability of re-
maining in the initial state does not decrease linearly with
t but quadratically. In addition, assuming that the range
of energy of the continuum is [0–∞], the decay is less rapid
than an exponential decay for very long times (t � �/Γ ,
Γ being the width of the resonance ) (see complement
AIII in [11]). Various aspects of non-exponential decays
can be found in [12,13]. In agreement with the theory,
for very short times, the decay rate varies quadratically
with t in the whole range of the electric field investigated
[0.005–1 a.u.]. However, this result is not significant since,
for under- the ionization barrier regime (E < 0.06 a.u.),
the dynamics for very short times is largely dominated
by transitory oscillations (see Figs. 1 and 2). It is also
interesting to compare our results with those found for
autoionizing systems such as the He− 1s2p2 4P or the Li−
1s22s2p 3P0 shape resonances [14–16]. For a well isolated
resonance (E < 0.06 a.u. for the atom H) a transitory non-
expotential decay always precedes the exponential decay.
Contrary to many-electron systems, we have not observed
any departure from exponential decay for very long times.
This different behaviour comes from the very nature of the
continuum. For the hydrogen atom, the external electric
field generates a continuum of states whose energy extends
from −∞ to ∞ whereas for auto-ionizing states the contin-
uum associated with the free electron starts at the energy
threshold. This latter constraint on the energy is responsi-
ble for the departure from exponential decay for very long
times. However, these non-expotential decays are so short
that we may conclude that the hydrogen atom and many-
electron systems provide similar results. In particular, the
dynamical regimes for auto-ionizing states do not seem to
depend significantly on the electronic correlation.

Up to now we have not discussed the choice of the
ground state of the hydrogen atom as the initial state. We
may ask whether it is possible to prepare a 1s state at
t = 0 by switching on suddenly an external electric field?
We have presented the solution of a well defined problem
of initial condition, but is there any relationship between
the mathematical formalism and the physical reality? The
problem of the definition and of the calculation of the ini-
tial state has been addressed for many years especially
for auto-ionizing states [17]. The initial state may be de-
termined by variational calculations which satisfy some
criterion of localization. The external electric field cannot
be applied instantaneously. The experimental process is
adiabatic and the atom polarizes continuously while in-
creasing the field. Consequently, it seems more reasonable
to consider as initial state the polarized state

|φ〉 = |1s〉 − 2E|p〉 (a.u.). (16)

|p〉 is the doorway state of angular symmetry l = 1 ob-
tained by multiplying the ground state by the coordi-

nate z of the electron [4]. Expression (16) was derived
by elementary perturbation theory. We have performed
some numerical studies by starting from |φ〉 as the initial
state. As expected, the pre-expotential regime, at short
times, is deeply altered. Although |φ〉 keeps a localized
character, it is not, from a physical point of view, a sat-
isfactory initial state since the electric field continuously
varies with time. It results that for getting the response of
the atom initially in the ground state to the electric field,
one should solve the time-dependent Schrödinger equa-
tion with a time-dependent Hamiltonian. This is clearly
outside the scope of this paper. In addition, it may be
conjectured that the non-expotential decays will remain
outside the experimental observation. Nicolaides [13] ar-
gues that “... resonance states close to threshold are good
candidates for non-expotential decay...”. We are far from
these conditions in the ground state of the hydrogen atom.

4 Ionization from the lowest excited states

Ionization from excited states is worthwhile to study since
large oscillations may appear which do not exist for the
ground state. These oscillations arise from the degenera-
cies of the spectrum of the hydrogen atom. We have lim-
ited our study to the two lowest excited states 2s and 2pz

(hereafter denoted 2p). The lowest linear Stark effect gen-
erates two resonances whose approximative wave functions
at low field are

|+〉 =
1√
2
(|2s〉 + |2p〉), (17)

|−〉 =
1√
2
(|2s〉 − |2p〉). (18)

These resonances have been extensively investigated. Here
we are interested in the dynamics of ionization starting
from excited states which are linear combinations of |2s〉
and |2p〉. We have represented in Figures 5 and 6 the sur-
vival probabilities (on the left) and the lineshapes (on the
right) proceeding from the initial states |2s〉 and |+〉 for
three values of the electric field. Similar results (not dis-
cussed here) would be obtained for ionization from the
initial states |2p〉 and |−〉.

As expected, for a two-level systems, the dynamics is
characterized by damped oscillations (Fig. 5). The occu-
pation numbers of the states |2s〉 and |2p〉 are represented
by full and dotted lines, respectively. The damping in-
creases from (a) to (c) with the increase of the electric
field. In (a) the oscillations are reversible at the time scale
of 400 a.u. whereas the decays in (b) and (c) are governed
by the lifetimes τ− = �/Γ− and τ+ = �/Γ+ of the two
resonances whose complex energies E− and E+ appear in
the two dominant terms of the Green’s function

G(z) = 〈2s| 1
z −H

|2s〉 =
f−

z − E− +
f+

z − E+
+ ... (19)

As expected, |f−| � |f+| � 1/2. The widths of the res-
onances observed in the lineshapes are inversely propor-
tional to the decay time. The lifetime of the metastable
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Fig. 5. Ionization from the |2s〉 state. The survival propabili-
ties P (t) (2) and the lineshape I(E) (3) are represented on the
left and on the right, respectively (full lines). The occupation
of the state |2p〉 is represented with dotted lines. (a) E = 0.005,
(b) E = 0.01, (c) E = 0.02 (atomic units).

state 2s and the lifetime of the state 2p corresponding
to spontaneous emission were not considered here since
they are much greater than the lifetimes of the resonances
within the range of the electric field investigated. In Fig-
ure 6 ionization starts from the initial state |+〉 which is
a resonance. Consequently, the large oscillations observed
in Figure 5 have disappeared and the resonance decays
almost exponentially. In case (a) the transitory oscillation
of small amplitude are quite similar to those observed for
the ground state (see Fig. 1c).

In contrast with small amplitude oscillations arising
from the ground state (Fig. 1), large amplitude oscillations
are found in Figure 5. Does it mean that these oscillations
could be observed? Their lifetimes 400 a.u � 10 fs is suf-
ficient for an experimental detection but how to prepare
these resonances in a very high static electric field? Switch-
ing on a static electric field requires typically 1 ns which
is much larger than the resonance lifetimes (� 10 fs). This
means that these time-dependent phenomena probably do
exist in highly ionized media but may not be observable
in the laboratory.

5 Conclusion

We have presented an overall treatment of the problem
of the decay of the ground state of an hydrogen atom in
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Fig. 6. Ionization from the |+〉 state. The survival propability
P (t) (2) and the lineshape I(E) (3) are represented on the left
and on the right, respectively. (a) E = 0.005, (b) E = 0.01, (c)
E = 0.02 (atomic units).

an external static electric field for weak (under the bar-
rier) and strong (above the barrier) electric fields. Our
results complete those previously found by Scrinzi and
Geltman. We have systematically investigated the depar-
tures from exponential decay within an extended range
of electric fields. At low field the oscillating transitory
regimes were interpreted in term of excitation of the low-
est resonances above the ground state. At higher field, the
transitory regimes disappear and the decays look more
Gaussian than Lorentzian. In a complementary study we
have also investigated various dynamical regimes arising
from the lowest excited states. It is noteworthy that the
hydrogen atom, as soon as it is put into a static electric
field, may provide such an extended set of reversible and
irreversible time-dependent phenomena. This means that
irreversibility is already present within the dynamics of
the simplest atom. The various decay regimes discussed
in this paper surely exist although they might not be di-
rectly observable. At all the steps of our study we have
kept an equal balance between the variables energy and
time, as suggested by the dual role played by the Hamilto-
nian in quantum mechanics [18]. This point of view might
be fruitful for computing and understanding the physics
of many-electron systems.
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